Math 241

Problem Set 2 solution manual

Exercise. A2.1
Required to show that = and aza™' have the same order.

Lemma. e (axa™H" = a.ax".a L.

eabal=1sb=1

proof. -we have : (a.z.a™")" = (a.z.a™Y).(a.z.a™1)....(a.z.a" 1) = a.z.(a
=aa"a t=aecal=e¢

(abaV)=1lwab=asb=alaeb=1.

e Case 1 :x has a finite order
Using the above lemma we conclude that:
{n | (aza )" = e} = {n | 2™ = e}. Since the order of z is the smallest positive integer n
such that 2" = e , we conclude that = and aza™' have the same order.

e Case 2 : order of x is infinite.
<z>={z" neN}
Suppose that a.z.a~! have a finite order. == there exists n € N such that (a.x.a™!)" =e.
but this implies that "™ = e which contradicts the fact that z has an infinite order.

Exercise. A2.2

Note That in this exercise (a,b)"™ is just (a,b) + (a,b) + ... + (a, b) n-times.

Consider the element (1,1) € Zg x Zy .

(1,1)*2 = (12,12) = (0,0). We still need to show that 12 is the least integer n € N such that
(1,1)™ = (0,0).

Let n € N* be such that (1,1)" = (0,0).

= (n,n) =(0,0)

= n=0inZ3,and n =0 in Z4.

= n is a common multiple of 3 and 4, but the smallest positive common multiple of 3 and 4 is
12, so n must be greater than or equal 12.

Hence the order of (1,1) is 12 .

Section. 4 :

Exercise. 32:
G is a group such that z xx = e for all z € GG, where e is the identity element of G.
Notice that ¥z =e¢ = =z forallz € G.

(axb)*(axb)=e

(axb)x(axb)*x (b~ txa ) =b"lxa!

(axb)xax(bxbHNxat=b"1xa!

(axb)x(axa ) =b"lxa?

(axb) =b"'xa ! =bxa

NN



OR you can do the following:

Lemma. (ab)~!=b"1a"t
proof. ab.(b"la™1) =a(bb™a"l =a.la™l = 1.

Now the solution would be like: (axb) x (axb) =e = (axb)*(axb)x(axb)™! = (axb)~?
(axb)=b"lxa" ! =bxa

Exercise. 33:
We proceed by induction on n.
Base step: For n =1 (a%b)! = a! xb!. so it is true for n = 1.

Inductive step: suppose it is true for n, then we have (a x b)" = a" x b"™.
Required to show that (ax b)"! = g™+« prHl
(axb)"! = (axb)" % (axb)
=a" *xb" x (a*b)
=a"*xb"x (bxa)
=a"* (b" *xb) xa)
=a" % (0" xa)
= (a" xa) * b" 1)
— an+1 *bn—H .

So it is true for n + 1. Finally by induction we have it true for all n.

Exercise. 37:

G is a group. Given axbx ¢ = e, e being the identity of G, and a,b and ¢ € G.
axbxc=e = ax(bxc)=e which implies that bxc=a"" .

Then bxcxa = (bxc)xa=e.

Section. 5 :
For exercises 22, 23, 24, 33, and 34 we have:
The subgroup generated by any element a € GL(2,R) or € GL(4,R)is { a" |n € Z }.

. 0 -1
Exercise. 22: a = { 1 0 ] .

Note that:
9 0 -1 0 -1 10
a® = . = .
-1 0 -1 0 0 1
and consequently any power of a is either a or the identity element. So the subgroup generated by
a contains only a and Ir. then < a >= {I3,a}.



Exercise. 23:

|11
a= 01l
Note that:

9 11 11 1 2
a” = . == .
0 1 01 0 1
Let us prove that a"—[ (1) 7; } .

For n = 2 it is true (proved above).
Suppose true for n, and let us prove it for n + 1.

1 n 11 1 n+1 . .
nt+l _ . n , _ _
a =a".a = [ 0 1 ] . [ 0 1 ] = [ 0 1 ] . The above result is also true for n < 0,since
_1 1 -1 . . .

=10 1 , and we proceed again by induction.

1 n

So<a>:{[0 1] |neZ}.

Exercise. 24: Similarly we can prove by induction that for a = [ g g } .

<a>={ [30 2071] |neZ}.

0
1
0

00 01
So the subgroup generated by a is < a >={ Iy, a }.
Note that a = F(q 3)(2,4)

Exercise. 33:

o= OO
— o O O
o O = O

1
0
0
0

1
0
0

= o O
o O O

Note that a2 = [

Exercise. 34:

00 01
aZOOlO
1 0 00
01 00
01 00
o 1000
Wehavea—ooo1
0 010



0010
s_|00001
0100
100 0
1.0 0 0]
, o100
“=19o010| ™
000 1

This ir_nplies that a is of order 4, and the subgroup generated by a is < a >= { Iy, a, a®, a® }.
Note that a = F1324)

Exercise. 42:
G is a cyclic group, = J a € G such that G=<a >. ¢ : G — G’ is an isomorphism.
Claim: G’=< ¢(a) >.

e pla) e G = < ¢P(a) > C G

e Let b’e G'. Then since ¢ is an isomorphism 3 an element b € G such that ¢(b) = b'.
But be G = b= a" for some n € Z.
= b'=¢(a") = (¢(a))" (since ¢ is a homomorphism)
— b'e< ¢(a) >.
Then the above paragraph shows G'C< ¢(a) >.

So we have G’=< ¢(a) >, So G’ is cyclic.

Exercise. 51:

G is a group, and a is a fixed element € G.
H,={zeG|za=az}.

Required to prove H, subgroup of G.

e ca = ae for e being the identity element of G, then e € H,,.
e suppose z, y € H, then za = ax, and ya = ay,
then (zy)a = z(ya) = z(ay) = (za)y = (ax)y = a(xy). So zy € H,.

e forzre Hy,ar =004 = a=zxar ! = z la=ar!. = 27! € H,.

Then H, is a subgroup of G.

Exercise. 54:
H and K are two subgroups of GG , required to show that H N K is a subgroup of G.



e cc H
ec K
— ec HNK.

o et randy € HNK. Then z and y € H and K
Then z.y e Hyand z.y e K. — zye HNK.

eletzrc HNK . Thenx € H andzx € K, = z '€ Hand 27! € K.
= e HNK.

So we have H N K a subgroup of G.

Section. 6

Exercise. 18:
The cyclic subgroup generated by 30 in Z4s is of order 7 : -We can either find the elements of
< 30 > by successive addition to get that:

< 30> ={0, 30, 18, 6, 36, 24, 12 }.

-Or we can use the fact that | < 30 > \:WM = % =7.

Exercise. 22:
719 is a cyclic group, so all its subgroups are cyclic. So the subgroups of Z1s are < a > for a € Zq».

e For a =1,5,7,11 , we have G.C.D(a,12) =1, so < a >=Zq2.

Fora=2,<2>={0,24,6,8 10} =< 10 >

Fora=3,<3>={0,3,6,9}=<9>

Fora=4,<4>={0,4,8}=<8>

Fora=6,<6>={0,6}.



The diagrame of subgroups is:

Zy
<3 >

<6

N\
7\
NS

Exercise. 29:

The subgroups of Z17 are only the cyclic subgroups generated by its elements.

But since for every a € Zj; GCD(a,17) =1, then < a >= Z7 for all a # 0. So the only possible
orders of subgroups of Z;7 are 1, and 17.



