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Problem Set 2 solution manual

Exercise. A2.1
Required to show that x and axa−1 have the same order.

Lemma. • (axa−1)n = a.xn.a−1.

• aba−1 = 1 ⇔ b = 1

proof. -we have : (a.x.a−1)n = (a.x.a−1).(a.x.a−1)....(a.x.a−1) = a.x.(a−1.a).x.(a−1.a)....(a−1.a).x.a−1

= a.xn.a−1 = a.e.a−1 = e
-(aba−1) = 1 ⇔ ab = a ⇔ b = a−1a ⇔ b = 1.

• Case 1 :x has a finite order
Using the above lemma we conclude that:
{n | (axa−1)n = e} = {n | xn = e}. Since the order of x is the smallest positive integer n
such that xn = e , we conclude that x and axa−1 have the same order.

• Case 2 : order of x is infinite.
< x >= { xn n ∈ N }.
Suppose that a.x.a−1 have a finite order. =⇒ there exists n ∈ N such that (a.x.a−1)n = e.
but this implies that xn = e which contradicts the fact that x has an infinite order.

Exercise. A2.2
Note That in this exercise (a, b)n is just (a, b) + (a, b) + ...+ (a, b) n-times.
Consider the element (1, 1) ∈ Z3 × Z4 .
(1, 1)12 = (12, 12) = (0, 0). We still need to show that 12 is the least integer n ∈ N such that
(1, 1)n = (0, 0).
Let n ∈ N∗ be such that (1, 1)n = (0, 0).
=⇒ (n, n) = (0, 0)
=⇒ n = 0 in Z3 , and n = 0 in Z4.
=⇒ n is a common multiple of 3 and 4, but the smallest positive common multiple of 3 and 4 is
12, so n must be greater than or equal 12.
Hence the order of (1, 1) is 12 .

Section. 4 :

Exercise. 32:
G is a group such that x ? x = e for all x ∈ G, where e is the identity element of G.
Notice that x ? x = e =⇒ x = x−1 for all x ∈ G.
=⇒ (a ? b) ? (a ? b) = e
=⇒ (a ? b) ? (a ? b) ? (b−1 ? a−1) = b−1 ? a−1

=⇒ (a ? b) ? a ? (b ? b−1) ? a−1 = b−1 ? a−1

=⇒ (a ? b) ? (a ? a−1) = b−1 ? a−1

=⇒ (a ? b) = b−1 ? a−1 = b ? a
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OR you can do the following:

Lemma. (ab)−1 = b−1a−1.

proof. ab.(b−1a−1) = a(bb−1)a−1 = a.1.a−1 = 1.

Now the solution would be like: (a ? b) ? (a ? b) = e =⇒ (a ? b) ? (a ? b) ? (a ? b)−1 = (a ? b)−1

(a ? b) = b−1 ? a−1 = b ? a

Exercise. 33:
We proceed by induction on n.

Base step: For n = 1 (a ? b)1 = a1 ? b1. so it is true for n = 1.

Inductive step: suppose it is true for n, then we have (a ? b)n = an ? bn.
Required to show that (a ? b)n+1 = an+1 ? bn+1

(a ? b)n+1 = (a ? b)n ? (a ? b)
= an ? bn ? (a ? b)
= an ? bn ? (b ? a)
= an ? (bn ? b) ? a)
= an ? (bn+1 ? a)
= (an ? a) ? bn+1)
= an+1 ? bn+1 .
So it is true for n+ 1. Finally by induction we have it true for all n.

Exercise. 37:
G is a group. Given a ? b ? c = e, e being the identity of G, and a, b and c ∈ G.
a ? b ? c = e =⇒ a ? (b ? c) = e which implies that b ? c = a−1 .
Then b ? c ? a = (b ? c) ? a = e.

Section. 5 :
For exercises 22, 23, 24, 33, and 34 we have:
The subgroup generated by any element a ∈ GL(2,R) or ∈ GL(4,R) is { an | n ∈ Z }.

Exercise. 22: a =
[

0 −1
−1 0

]
.

Note that:

a2 =
[

0 −1
−1 0

]
.

[
0 −1
−1 0

]
=
[

1 0
0 1

]
.

and consequently any power of a is either a or the identity element. So the subgroup generated by
a contains only a and I2. then < a >= {I2, a}.
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Exercise. 23:

a =
[

1 1
0 1

]
.

Note that:

a2 =
[

1 1
0 1

]
.

[
1 1
0 1

]
=
[

1 2
0 1

]
.

Let us prove that an=
[

1 n
0 1

]
.

For n = 2 it is true (proved above).
Suppose true for n, and let us prove it for n+ 1.

an+1 = an.a =
[

1 n
0 1

]
.

[
1 1
0 1

]
=
[

1 n+ 1
0 1

]
. The above result is also true for n < 0,since

a−1 =
[

1 −1
0 1

]
, and we proceed again by induction.

So < a >= {
[

1 n
0 1

]
| n ∈ Z }.

Exercise. 24: Similarly we can prove by induction that for a =
[

3 0
0 2

]
.

< a >= {
[

3n 0
0 2n

]
| n ∈ Z }.

Exercise. 33:

a =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



Note that a2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

So the subgroup generated by a is < a >= { I4, a }.
Note that a = P(1,3)(2,4)

Exercise. 34:

a =


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0



we have a2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .
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a3 =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 .

a4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4.

This implies that a is of order 4, and the subgroup generated by a is < a >= { I4, a, a2, a3 }.
Note that a = P(1324)

Exercise. 42:
G is a cyclic group, =⇒ ∃ a ∈ G such that G=< a >. φ : G −→ G’ is an isomorphism.
Claim: G’=< φ(a) >.

• φ(a) ∈ G′ =⇒ < φ(a) > ⊆ G′.

• Let b’∈ G′. Then since φ is an isomorphism ∃ an element b ∈ G such that φ(b) = b’.
But b ∈ G =⇒ b = an for some n ∈ Z.
=⇒ b’=φ(an) = (φ(a))n (since φ is a homomorphism)
=⇒ b’∈< φ(a) >.
Then the above paragraph shows G’⊆< φ(a) >.

So we have G’=< φ(a) >, So G’ is cyclic.

Exercise. 51:
G is a group, and a is a fixed element ∈ G.
Ha = { x ∈ G | xa = ax }.
Required to prove Ha subgroup of G.

• ea = ae for e being the identity element of G, then e ∈ Ha.

• suppose x, y ∈ Ha then xa = ax, and ya = ay,
then (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy). So xy ∈ Ha.

• for x ∈ Ha, ax = xa =⇒ a = xax−1 =⇒ x−1a = ax−1. =⇒ x−1 ∈ Ha.

Then Ha is a subgroup of G.

Exercise. 54:
H and K are two subgroups of G , required to show that H ∩K is a subgroup of G.
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• e ∈ H
e ∈ K
=⇒ e ∈ H ∩K.

• Let x and y ∈ H ∩K. Then x and y ∈ H and K
Then x.y ∈ H, and x.y ∈ K. =⇒ x.y ∈ H ∩K.

• Let x ∈ H ∩K . Then x ∈ H, and x ∈ K, =⇒ x−1 ∈ H and x−1 ∈ K.
=⇒ x−1 ∈ H ∩K.

So we have H ∩K a subgroup of G.

Section. 6

Exercise. 18:
The cyclic subgroup generated by 30 in Z42 is of order 7 : -We can either find the elements of
< 30 > by successive addition to get that:
< 30 > ={ 0, 30, 18, 6, 36, 24, 12 }.

-Or we can use the fact that | < 30 > |= 42
G.C.D(30,42) = 42

6 = 7.

Exercise. 22:
Z12 is a cyclic group, so all its subgroups are cyclic. So the subgroups of Z12 are < a > for a ∈ Z12.

• For a = 1, 5, 7, 11 , we have G.C.D(a, 12) = 1 , so < a >=Z12.

• For a = 2 , < 2 >= { 0, 2, 4, 6, 8, 10 } =< 10 >

• For a = 3 , < 3 >= { 0, 3, 6, 9 } =< 9 >

• For a = 4 , < 4 >= { 0, 4, 8 } =< 8 >

• For a = 6 , < 6 >= { 0, 6 }.
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The diagrame of subgroups is:

Z12

< 3 > < 2 >

< 6 > < 4 >

< 0 >

Exercise. 29:
The subgroups of Z17 are only the cyclic subgroups generated by its elements.
But since for every a ∈ Z∗17 GCD(a, 17) = 1 , then < a >= Z17 for all a 6= 0. So the only possible
orders of subgroups of Z17 are 1, and 17.
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