Problem Set 2 solution manual

Exercise. A2.1

Required to show that x and $a x a^{-1}$ have the same order.

Lemma. - $\left(a x a^{-1}\right)^{n}=a \cdot x^{n} \cdot a^{-1}$.

- $a b a^{-1}=1 \Leftrightarrow b=1$
proof. -we have: $\left(a \cdot x \cdot a^{-1}\right)^{n}=\left(a \cdot x \cdot a^{-1}\right) \cdot\left(a \cdot x \cdot a^{-1}\right) \ldots \cdot\left(a \cdot x \cdot a^{-1}\right)=a \cdot x \cdot\left(a^{-1} \cdot a\right) \cdot x \cdot\left(a^{-1} \cdot a\right) \ldots \cdot\left(a^{-1} \cdot a\right) \cdot x \cdot a^{-1}$

$$
=a \cdot x^{n} \cdot a^{-1}=a \cdot e \cdot a^{-1}=e
$$

$-\left(a b a^{-1}\right)=1 \Leftrightarrow a b=a \Leftrightarrow b=a^{-1} a \Leftrightarrow b=1$.

- Case $1: x$ has a finite order

Using the above lemma we conclude that:
$\left\{n \mid\left(a x a^{-1}\right)^{n}=e\right\}=\left\{n \mid x^{n}=e\right\}$. Since the order of x is the smallest positive integer n such that $x^{n}=e$, we conclude that x and $a x a^{-1}$ have the same order.

- Case 2: order of x is infinite.
$<x>=\left\{x^{n} \quad n \in \mathbb{N}\right\}$.
Suppose that $a \cdot x \cdot a^{-1}$ have a finite order. \Longrightarrow there exists $n \in \mathbb{N}$ such that $\left(a \cdot x \cdot a^{-1}\right)^{n}=e$. but this implies that $x^{n}=e$ which contradicts the fact that x has an infinite order.

Exercise. A2.2

Note That in this exercise $(a, b)^{n}$ is just $(a, b)+(a, b)+\ldots+(a, b) n$-times.
Consider the element $(1,1) \in \mathbb{Z}_{3} \times \mathbb{Z}_{4}$.
$(1,1)^{12}=(12,12)=(0,0)$. We still need to show that 12 is the least integer $n \in \mathbb{N}$ such that $(1,1)^{n}=(0,0)$.
Let $n \in \mathbb{N}^{*}$ be such that $(1,1)^{n}=(0,0)$.
$\Longrightarrow(n, n)=(0,0)$
$\Longrightarrow n=0$ in \mathbb{Z}_{3}, and $n=0$ in \mathbb{Z}_{4}.
$\Longrightarrow n$ is a common multiple of 3 and 4 , but the smallest positive common multiple of 3 and 4 is 12 , so n must be greater than or equal 12 .
Hence the order of $(1,1)$ is 12 .

Section. 4 :

Exercise. 32:
G is a group such that $x \star x=e$ for all $x \in G$, where e is the identity element of G.
Notice that $x \star x=e \Longrightarrow x=x^{-1}$ for all $x \in G$.
$\Longrightarrow(a \star b) \star(a \star b)=e$
$\Longrightarrow(a \star b) \star(a \star b) \star\left(b^{-1} \star a^{-1}\right)=b^{-1} \star a^{-1}$
$\Longrightarrow(a \star b) \star a \star\left(b \star b^{-1}\right) \star a^{-1}=b^{-1} \star a^{-1}$
$\Longrightarrow(a \star b) \star\left(a \star a^{-1}\right)=b^{-1} \star a^{-1}$
$\Longrightarrow(a \star b)=b^{-1} \star a^{-1}=b \star a$

OR you can do the following:

Lemma. $(a b)^{-1}=b^{-1} a^{-1}$.
proof. $a b .\left(b^{-1} a^{-1}\right)=a\left(b b^{-1}\right) a^{-1}=a \cdot 1 \cdot a^{-1}=1$.
Now the solution would be like: $(a \star b) \star(a \star b)=e \Longrightarrow(a \star b) \star(a \star b) \star(a \star b)^{-1}=(a \star b)^{-1}$ $(a \star b)=b^{-1} \star a^{-1}=b \star a$

Exercise. 33:

We proceed by induction on n.
Base step: For $n=1(a \star b)^{1}=a^{1} \star b^{1}$. so it is true for $n=1$.
Inductive step: suppose it is true for n, then we have $(a \star b)^{n}=a^{n} \star b^{n}$.
Required to show that $(a \star b)^{n+1}=a^{n+1} \star b^{n+1}$
$(a \star b)^{n+1}=(a \star b)^{n} \star(a \star b)$
$=a^{n} \star b^{n} \star(a \star b)$
$=a^{n} \star b^{n} \star(b \star a)$
$\left.=a^{n} \star\left(b^{n} \star b\right) \star a\right)$
$=a^{n} \star\left(b^{n+1} \star a\right)$
$\left.=\left(a^{n} \star a\right) \star b^{n+1}\right)$
$=a^{n+1} \star b^{n+1}$.
So it is true for $n+1$. Finally by induction we have it true for all n.

Exercise. 37:

G is a group. Given $a \star b \star c=e, e$ being the identity of G, and a, b and $c \in G$. $a \star b \star c=e \Longrightarrow a \star(b \star c)=e$ which implies that $b \star c=a^{-1}$.
Then $b \star c \star a=(b \star c) \star a=e$.

Section. 5 :

For exercises $22,23,24,33$, and 34 we have:
The subgroup generated by any element $a \in G L(2, \mathbb{R})$ or $\in G L(4, \mathbb{R})$ is $\left\{a^{n} \mid n \in \mathbb{Z}\right\}$.
Exercise. 22: $a=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$.
Note that:
$a^{2}=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right] \cdot\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
and consequently any power of a is either a or the identity element. So the subgroup generated by a contains only a and I_{2}. then $\langle a\rangle=\left\{I_{2}, a\right\}$.

Exercise. 23:
$a=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
Note that:
$a^{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$.
Let us prove that $a^{n}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$.
For $n=2$ it is true (proved above).
Suppose true for n , and let us prove it for $n+1$.
$a^{n+1}=a^{n} \cdot a=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & n+1 \\ 0 & 1\end{array}\right]$. The above result is also true for $n<0$, since $a^{-1}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$, and we proceed again by induction.
So $<a>=\left\{\left.\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right] \right\rvert\, n \in \mathbb{Z}\right\}$.

Exercise. 24: Similarly we can prove by induction that for $a=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$.
$<a>=\left\{\left.\left[\begin{array}{cc}3^{n} & 0 \\ 0 & 2^{n}\end{array}\right] \right\rvert\, n \in \mathbb{Z}\right\}$.

Exercise. 33:

$$
a=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Note that $a^{2}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
So the subgroup generated by a is $<a\rangle=\left\{I_{4}, a\right\}$.
Note that $a=P_{(1,3)(2,4)}$
Exercise. 34:
$a=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$
we have $a^{2}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$.
$\begin{aligned} a^{3} & =\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right] . \\ a^{4} & =\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]=I_{4} .\end{aligned}$
This implies that a is of order 4, and the subgroup generated by a is $\langle a\rangle=\left\{I_{4}, a, a^{2}, a^{3}\right\}$. Note that $a=P_{(1324)}$

Exercise. 42:
G is a cyclic group, $\Longrightarrow \exists a \in \mathrm{G}$ such that $\mathrm{G}=\langle a\rangle . \phi: \mathrm{G} \longrightarrow \mathrm{G}^{\prime}$ is an isomorphism.
Claim: $\mathrm{G}^{\prime}=<\phi(a)>$.

- $\phi(a) \in G^{\prime} \Longrightarrow<\phi(a)>\subseteq G^{\prime}$.
- Let $b^{\prime} \in G^{\prime}$. Then since ϕ is an isomorphism \exists an element $b \in \mathrm{G}$ such that $\phi(b)=b^{\text {. }}$.

But $b \in G \Longrightarrow b=a^{n}$ for some $n \in \mathbb{Z}$.
$\Longrightarrow b^{\prime}=\phi\left(a^{n}\right)=(\phi(a))^{n}$ (since ϕ is a homomorphism)
$\Longrightarrow b^{\prime} \in\langle\phi(a)\rangle$.
Then the above paragraph shows $G^{\prime} \subseteq<\phi(a)>$.
So we have $G^{\prime}=<\phi(a)>$, So G^{\prime} is cyclic.

Exercise. 51:

G is a group, and a is a fixed element $\in G$.
$H_{a}=\{x \in \mathrm{G} \mid x a=a x\}$.
Required to prove H_{a} subgroup of G.

- $e a=a e$ for e being the identity element of G, then $e \in H_{a}$.
- suppose $x, y \in H_{a}$ then $x a=a x$, and $y a=a y$,
then $(x y) a=x(y a)=x(a y)=(x a) y=(a x) y=a(x y)$. So $x y \in H_{a}$.
- for $x \in H_{a}, a x=x a \Longrightarrow a=x a x^{-1} \Longrightarrow x^{-1} a=a x^{-1} . \Longrightarrow x^{-1} \in H_{a}$.

Then H_{a} is a subgroup of G.

Exercise. 54:
H and K are two subgroups of G, required to show that $H \cap K$ is a subgroup of G.

- $e \in H$
$e \in K$
$\Longrightarrow e \in H \cap K$.
- Let x and $y \in H \cap K$. Then x and $y \in H$ and K

Then $x . y \in H$, and $x . y \in K . \Longrightarrow x . y \in H \cap K$.

- Let $x \in H \cap K$. Then $x \in H$, and $x \in K, \Longrightarrow x^{-1} \in H$ and $x^{-1} \in K$. $\Longrightarrow x^{-1} \in H \cap K$.

So we have $H \cap K$ a subgroup of G.

Section. 6

Exercise. 18:

The cyclic subgroup generated by 30 in \mathbb{Z}_{42} is of order 7 : -We can either find the elements of $<30>$ by successive addition to get that:
$<30>=\{0,30,18,6,36,24,12\}$.
-Or we can use the fact that $|<30>|=\frac{42}{\text { G.C.D }(30,42)}=\frac{42}{6}=7$.

Exercise. 22:

\mathbb{Z}_{12} is a cyclic group, so all its subgroups are cyclic. So the subgroups of \mathbb{Z}_{12} are $<a>$ for $a \in \mathbb{Z}_{12}$.

- For $a=1,5,7,11$, we have $G \cdot C \cdot D(a, 12)=1$, so $<a>=\mathbb{Z}_{12}$.
- For $a=2,<2>=\{0,2,4,6,8,10\}=<10>$
- For $a=3,<3>=\{0,3,6,9\}=<9>$
- For $a=4,<4>=\{0,4,8\}=<8>$
- For $a=6,<6>=\{0,6\}$.

The diagrame of subgroups is:

Exercise. 29:
The subgroups of \mathbb{Z}_{17} are only the cyclic subgroups generated by its elements.
But since for every $a \in \mathbb{Z}_{17}^{*} G C D(a, 17)=1$, then $\langle a\rangle=\mathbb{Z}_{17}$ for all $a \neq 0$. So the only possible orders of subgroups of \mathbb{Z}_{17} are 1 , and 17 .

