Math 241

Problem Set 2 solution manual

Exercise. A2.1

Required to show that x and axa^{-1} have the same order.

• $(axa^{-1})^n = a.x^n.a^{-1}.$ Lemma.

• $aba^{-1} = 1 \Leftrightarrow b = 1$

proof. -we have : $(a.x.a^{-1})^n = (a.x.a^{-1}).(a.x.a^{-1})...(a.x.a^{-1}) = a.x.(a^{-1}.a).x.(a^{-1}.a)...(a^{-1}.a).x.a^{-1}$ $= a.x^n.a^{-1} = a.e.a^{-1} = e$ $-(aba^{-1}) = 1 \Leftrightarrow ab = a \Leftrightarrow b = a^{-1}a \Leftrightarrow b = 1.$

- Case 1:x has a finite order
 - Using the above lemma we conclude that: $\{n \mid (axa^{-1})^n = e\} = \{n \mid x^n = e\}$. Since the order of x is the smallest positive integer n such that $x^n = e$, we conclude that x and axa^{-1} have the same order.
- Case 2 : order of x is infinite. $\langle x \rangle = \{ x^n \mid n \in \mathbb{N} \}.$ Suppose that $a.x.a^{-1}$ have a finite order. \implies there exists $n \in \mathbb{N}$ such that $(a.x.a^{-1})^n = e$. but this implies that $x^n = e$ which contradicts the fact that x has an infinite order.

Exercise. A2.2

Note That in this exercise $(a, b)^n$ is just $(a, b) + (a, b) + \dots + (a, b)$ n-times. Consider the element $(1,1) \in \mathbb{Z}_3 \times \mathbb{Z}_4$. $(1,1)^{12} = (12,12) = (0,0)$. We still need to show that 12 is the least integer $n \in \mathbb{N}$ such that $(1,1)^n = (0,0).$ Let $n \in \mathbb{N}^*$ be such that $(1,1)^n = (0,0)$. $\implies (n,n) = (0,0)$

 $\implies n = 0$ in \mathbb{Z}_3 , and n = 0 in \mathbb{Z}_4 .

 \implies n is a common multiple of 3 and 4, but the smallest positive common multiple of 3 and 4 is 12, so n must be greater than or equal 12.

Hence the order of (1, 1) is 12.

Section. 4 :

Exercise. 32:

G is a group such that $x \star x = e$ for all $x \in G$, where e is the identity element of G. Notice that $x \star x = e \implies x = x^{-1}$ for all $x \in G$. $\implies (a \star b) \star (a \star b) = e$ $\implies (a \star b) \star (a \star b) \star (b^{-1} \star a^{-1}) = b^{-1} \star a^{-1}$

- $\implies (a \star b) \star a \star (b \star b^{-1}) \star a^{-1} = b^{-1} \star a^{-1}$ $\implies (a \star b) \star (a \star a^{-1}) = b^{-1} \star a^{-1}$ $\implies (a \star b) = b^{-1} \star a^{-1} = b \star a$

OR you can do the following:

Lemma. $(ab)^{-1} = b^{-1}a^{-1}$.

proof. $ab.(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = a.1.a^{-1} = 1.$

Now the solution would be like: $(a \star b) \star (a \star b) = e \implies (a \star b) \star (a \star b) \star (a \star b)^{-1} = (a \star b)^{-1}$ $(a \star b) = b^{-1} \star a^{-1} = b \star a$

Exercise. 33:

We proceed by induction on n.

Base step: For n = 1 $(a \star b)^1 = a^1 \star b^1$. so it is true for n = 1.

Inductive step: suppose it is true for n, then we have $(a \star b)^n = a^n \star b^n$. Required to show that $(a \star b)^{n+1} = a^{n+1} \star b^{n+1}$ $(a \star b)^{n+1} = (a \star b)^n \star (a \star b)$ $= a^n \star b^n \star (a \star b)$ $= a^n \star b^n \star (b \star a)$ $= a^n \star (b^n \star b) \star a)$ $= a^n \star (b^{n+1} \star a)$ $= (a^n \star a) \star b^{n+1})$ $= a^{n+1} \star b^{n+1}$. So it is true for n + 1. Finally by induction we have it true for all n.

Exercise. 37: *G* is a group. Given $a \star b \star c = e$, *e* being the identity of *G*, and *a*, *b* and $c \in G$. $a \star b \star c = e \implies a \star (b \star c) = e$ which implies that $b \star c = a^{-1}$. Then $b \star c \star a = (b \star c) \star a = e$.

Section. 5: For exercises 22, 23, 24, 33, and 34 we have: The subgroup generated by any element $a \in GL(2, \mathbb{R})$ or $\in GL(4, \mathbb{R})$ is $\{a^n \mid n \in \mathbb{Z}\}$.

Exercise. 22: $a = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$. Note that: $a^2 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. and consequently any power of *a* is either *a* or

and consequently any power of a is either a or the identity element. So the subgroup generated by a contains only a and I_2 , then $\langle a \rangle = \{I_2, a\}$.

Exercise. 23: $a = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n + 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n + 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n + 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & n + 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} + n \in \mathbb{Z} \}.$

Exercise. 24: Similarly we can prove by induction that for $a = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$. $\langle a \rangle = \{ \begin{bmatrix} 3^n & 0 \\ 0 & 2^n \end{bmatrix} \mid n \in \mathbb{Z} \}.$

Exercise. 33:

$$a = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Note that $a^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
So the subgroup generated by a is $\langle a \rangle = \{ I_4, a \}$

So the subgroup generated by a is $\langle a \rangle = \{ I_4, a \}$. Note that $a = P_{(1,3)(2,4)}$

.

Exercise. 34:

$$a = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

we have $a^2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

$$a^{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = I_{4}.$$

This implies that a is of order 4, and the subgroup generated by a is $\langle a \rangle = \{ I_4, a, a^2, a^3 \}$. Note that $a = P_{(1324)}$

Exercise. 42:

G is a cyclic group, $\implies \exists a \in G$ such that $G = \langle a \rangle$. $\phi : G \longrightarrow G'$ is an isomorphism. Claim: $G' = \langle \phi(a) \rangle$.

- $\bullet \ \phi(a) \in G' \implies <\phi(a) > \subseteq G'.$
- Let b'∈ G'. Then since φ is an isomorphism ∃ an element b ∈ G such that φ(b) = b'. But b ∈ G ⇒ b = aⁿ for some n ∈ Z. ⇒ b'=φ(aⁿ) = (φ(a))ⁿ (since φ is a homomorphism) ⇒ b'∈< φ(a) >. Then the above paragraph shows G'⊆< φ(a) >.

So we have $G' = \langle \phi(a) \rangle$, So G' is cyclic.

Exercise. 51: *G* is a group, and *a* is a fixed element \in *G*. $H_a = \{ x \in G \mid xa = ax \}.$ Required to prove H_a subgroup of *G*.

- ea = ae for e being the identity element of G, then $e \in H_a$.
- suppose $x, y \in H_a$ then xa = ax, and ya = ay, then (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy). So $xy \in H_a$.
- for $x \in H_a$, $ax = xa \implies a = xax^{-1} \implies x^{-1}a = ax^{-1}$. $\implies x^{-1} \in H_a$.

Then H_a is a subgroup of G.

Exercise. 54: H and K are two subgroups of G, required to show that $H \cap K$ is a subgroup of G.

•
$$e \in H$$

 $e \in K$
 $\implies e \in H \cap K$

- Let x and $y \in H \cap K$. Then x and $y \in H$ and K. Then $x.y \in H$, and $x.y \in K$. $\implies x.y \in H \cap K$.
- Let $x \in H \cap K$. Then $x \in H$, and $x \in K$, $\implies x^{-1} \in H$ and $x^{-1} \in K$. $\implies x^{-1} \in H \cap K$.

So we have $H \cap K$ a subgroup of G.

Section. 6

Exercise. 18:

The cyclic subgroup generated by 30 in \mathbb{Z}_{42} is of order 7 : -We can either find the elements of $\langle 30 \rangle$ by successive addition to get that:

 $< 30 > = \{ 0, 30, 18, 6, 36, 24, 12 \}.$ -Or we can use the fact that $| < 30 > | = \frac{42}{G.C.D(30,42)} = \frac{42}{6} = 7.$

Exercise. 22:

 \mathbb{Z}_{12} is a cyclic group, so all its subgroups are cyclic. So the subgroups of \mathbb{Z}_{12} are $\langle a \rangle$ for $a \in \mathbb{Z}_{12}$.

- For a = 1, 5, 7, 11, we have G.C.D(a, 12) = 1, so $\langle a \rangle = \mathbb{Z}_{12}$.
- For a = 2, $\langle 2 \rangle = \{ 0, 2, 4, 6, 8, 10 \} = \langle 10 \rangle$
- For a = 3, $< 3 >= \{ 0, 3, 6, 9 \} = < 9 >$
- For a = 4, $< 4 >= \{ 0, 4, 8 \} = < 8 >$
- For a = 6, $< 6 >= \{ 0, 6 \}$.

The diagrame of subgroups is:

Exercise. 29:

The subgroups of \mathbb{Z}_{17} are only the cyclic subgroups generated by its elements.

But since for every $a \in \mathbb{Z}_{17}^*$ GCD(a, 17) = 1, then $\langle a \rangle = \mathbb{Z}_{17}$ for all $a \neq 0$. So the only possible orders of subgroups of \mathbb{Z}_{17} are 1, and 17.